小编给大家分享一下redis多路复用技术的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
redis 是一个单线程却性能非常好的内存数据库, 主要用来作为缓存系统。 redis 采用网络IO多路复用技术来保证在多连接的时候, 系统的高吞吐量。
LINUX IO多路复用原理
redis的多路复用, 提供了select, epoll, evport, kqueue几种选择,在编译的时候来选择一种。
- select是POSIX提供的, 一般的操作系统都有支撑;
- epoll 是LINUX系统内核提供支持的;
- evport是Solaris系统内核提供支持的;
- kqueue是Mac 系统提供支持的;
我们一般运行的服务器都是LINUX系统上面, 并且我对Solaris和Mac系统不是很了解, 我们这里重点比较一下select、poll和epoll 3种多路复用的差异。
select: 单个进程所能打开的最大连接数有FD_SETSIZE宏定义, 其大小为1024或者2048; FD数目剧增后, 会带来性能问题;消息传递从内核到与到用户空间,需要copy数据;
性能问题:
(1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大
(2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大poll: 基本上与select一样, 不通点在于没有FD数目的限制, 因为底层实现不是一个数组, 而是链表;
- epoll: FD连接数虽然有限制, 但是很大几乎可以认为无限制;epoll内核中实现是根据每个fd上的callback函数来实现的,只有活跃的socket才会主动调用callback,所以在活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题; 内核和用户通过共享内存来传递消息;
LINUX IO多路复用的接口
select 在LINUX的接口:
select 函数的参数:
- nfds:fd_set的FD的个数, 采用位图的方式记录fd_set集合的FD状态;
- readfds: fd_set 集合中来监控有哪些读操作没有被block, 如果有可读,select
- writefds:fd_set 集合中来监控有哪些写操作没有被block;
- exceptfds: fd_set 集合中来监控有哪些except操作没有被block;
- timeout: FD z最小被block的时间, 如果timeout的2个field都是0, 会立刻返回, 如果该参数是NULL, 会一直block;
select如果有一个或者多个读操作, 写操作, except操作不被block, 返回大于1的数值; 若果没有不被block的FD, 但是某些FD block超时, 返回0; 如果错误出现, 返回-1;
FD_XXX函数, 是添加、删除、清空以及判断fd_set的工具函数。
select的pseudo 代码:
epoll的LINUX的接口:
epoll提供edge-triggered及level-triggered模式。在edge-trigger模式中,epoll_wait仅会在新的事件首次被加入epoll 对象时返回;于level-triggered模式下,epoll_wait在事件状态未变更前将不断被触发。
举例来说,倘若有一个已经于epoll注册之管线接获数据,epoll_wait将返回,并发出数据读取的信号。现假设缓冲器的数据仅有部分被读取并处理,在level-triggered模式下,任何对epoll_wait之调用都将即刻返回,直到缓冲器中的数据全部被读取;然而,在edge-triggered的情境下,epoll_wait仅会于再次接收到新数据(亦即,新数据被写入管线)时返回。
epoll的实现pseudo 代码
redis 多路复用的应用
接下来我们看一下, redis的多路复用如何实现的。整个redis的main函数包含如下3部分:
1、初始化Redis Server参数,这部分代码通过initServerConfig实现。
2、初始化Redis Server,这部分代码在initServer里面。
3、启动事件轮询器。
这里第一部分, 就是通过配置文件的参数来初始化server对象的参数, 和本文的主题没有太大关系这里略过。
第二部分, 包含了创建轮询器, 以及一个时间event队列, 和file event数组。